翻訳と辞書
Words near each other
・ Rodney Brown (athlete)
・ Rodney Brown (cricketer)
・ Rodington, Shropshire
・ Rodinia
・ Rodinné trampoty oficiála Tříšky
・ Rodino
・ Rodino (rural locality)
・ Rodinov
・ Rodinsky
・ Rodinsky District
・ Rodinsky's Room
・ Rodion Azarkhin
・ Rodion Cămătaru
・ Rodion Davelaar
・ Rodion Gačanin
Rodion Kuzmin
・ Rodion Luka
・ Rodion Malinovsky
・ Rodion Markovits
・ Rodion Romanovich Raskolnikov
・ Rodion Shchedrin
・ Rodionov
・ Rodionov Publishing House
・ Rodionova
・ Rodionovia
・ Rodionovo-Nesvetaysky
・ Rodionovo-Nesvetaysky District
・ Rodirlei José Ascensão Duarte
・ Rodis Kanakaris-Roufos
・ Rodishain


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rodion Kuzmin : ウィキペディア英語版
Rodion Kuzmin

Rodion Osievich Kuzmin ((ロシア語:Родион Осиевич Кузьмин), Nov. 9, 1891, Riabye village in the Haradok district – March 23, 1949, Leningrad) was a Russian mathematician, known for his works in number theory and analysis. His name is sometimes transliterated as Kusmin.
==Selected results==

* In 1928, Kuzmin solved the following problem due to Gauss (see Gauss–Kuzmin distribution): if ''x'' is a random number chosen uniformly in (0, 1), and
:: x = \frac}
:is its continued fraction expansion, find a bound for
:: \Delta_n(s) = \mathbb \left\ - \log_2(1+s),
:where
:: x_n = \frac} .
:Gauss showed that ''Δ''''n'' tends to zero as ''n'' goes to infinity, however, he was unable to give an explicit bound. Kuzmin showed that
:: |\Delta_n(s)| \leq C e^}=2.6651441426902251886502972498731\ldots
:is transcendental. See Gelfond–Schneider theorem for later developments.
* He is also known for the Kusmin-Landau inequality: If f is continuously differentiable with monotonic derivative f' satisfying \Vert f'(x) \Vert \geq \lambda > 0 (where \Vert \cdot \Vert denotes the Nearest integer function) on a finite interval I, then
:: \sum_ e^\ll \lambda^.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rodion Kuzmin」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.